
Designing and Evaluating an Interpretable Predictive

Modeling Technique for Business Processes

Dominic Breuker1, Patrick Delfmann1, Martin Matzner1 and

Jörg Becker1

1 Department for Information Systems, Leonardo-Campus 3,

48149 Muenster, Germany

{breuker, delfmann, matzner, becker}@ercis.com

Abstract. Process mining is a field traditionally concerned with retrospective

analysis of event logs, yet interest in applying it online to running process

instances is increasing. In this paper, we design a predictive modeling technique

that can be used to quantify probabilities of how a running process instance will

behave based on the events that have been observed so far. To this end, we study

the field of grammatical inference and identify suitable probabilistic modeling

techniques for event log data. After tailoring one of these techniques to the

domain of business process management, we derive a learning algorithm. By

combining our predictive model with an established process discovery technique,

we are able to visualize the significant parts of predictive models in form of Petri

nets. A preliminary evaluation demonstrates the effectiveness of our approach.

Keywords: Data mining, process mining, grammatical inference, predictive

modeling

1 Motivation

In recent years, business analytics has emerged as one of the hottest topics in both

research and practice. With stories praising the opportunities of data analysis being

omnipresent, it is not surprising that scholars from diverse fields explore how data can

be exploited to improve business understanding and decision making. In business

process management (BPM), a research discipline called process mining has emerged

that deals with analyzing historical data about instances of business processes [1]. The

data usually comes in form of event logs, which are collections of sequences of events

that have been collected while executing a business process. Events are of different

types. The type describes the nature of an event. For instance, an event could represent

an activity that was performed or a decision that was made.

Traditionally, process mining has been used mainly for retrospective analysis. The

primary task of many process mining techniques is to discover the underlying process

given an event log, with the goal of providing analysts with an objective view on an

organization’s collective behavior [2]. Further analyses can follow. One could verify

that a process conforms to a given specification or improve the process based on the

discovered insights [1].

In recent times, interest has been expressed into applying process mining no only ex

post but also in an online setting. The idea is to apply insights gained from event logs

to currently running process instances. The goals could be to predict properties of

interest or recommend good decisions [3]. Techniques have been designed to predict

the time at which a process instance will be completed [4] or to recommend performers

for tasks such that performance is maximized [5].

In this paper, we consider a similar prediction problem. Interpreting events of an

event log as outcomes of decisions, our goal is to build a predictive analytics model

that accounts for the sequential nature of decision making in business processes.

Provided with a partial sequence of events from an unfinished process instance, the

model’s task is quantifying the likelihood of the instance ending with certain future

sequences. The model should be trained solemnly by means of event log data.

Such a predictive model could be useful in variety of situations. For instance, early

warning systems could be built. Decision makers could be provided with a list of

running process instances in which undesirable events will likely be observed in the

future. A predictive model could also be used to estimate how many running instances

will require a certain resource, again to warn decision makers if capacities will be

exceeded. Moreover, anomaly detection approaches could be built to identify highly

unlikely process instances. They could help pointing business analysts to unusual

instances. It is also conceivable to use a predictive model to support other process

mining endeavors, for instance by imputing missing values in incomplete event logs.

The first step in constructing a predictive modeling approach is defining a suitable

representation of the data and the model structure. To find one, we tap into research

from the field of grammatical inference, which is the study of learning structure from

discrete sequential data [6], often by fitting probabilistic models [7]. After identifying

a suitable model, we also discuss how to fit the model to data. Again, we draw on

grammatical inference to identify a suitable technique. Subsequently, we adapt the

probabilistic model to the BPM domain. As a consequence, we have to adapt the fitting

technique too. By applying the predictive modeling approach to real-world event logs,

we illustrate how it can be used and demonstrate its effectiveness.

The primary goal of our modifications is to define the probabilistic model such that

its structure most closely resembles the structure of business processes. An advantage

of that is that models with appropriate structure typically perform better when used in

predictive analytics. The other goal is to keep the model interpretable. Whenever non-

technical stakeholders are involved in predictive analytics endeavors, interpretability

can be crucial to get them on board. For this reason, interpretable models may be

preferred even if they perform worse than their black box counterparts [8]. By

combining a technique from process mining [9] with our predictive modeling approach,

we are able to visualize a predictive model’s structure in form of process models. This

puts domain experts in the position to judge the quality of a predictive model.

The remainder of this paper is structured as follows. In section 2, we discuss

probabilistic models and fitting techniques used in grammatical inference. Section 3 is

devoted to the BPM-specific modifications we designed. In section 4, we describe how

process mining can be applied to create visualizations. The evaluation of our approach

is documented in section 5. In section 6, we conclude and give an outlook to future

research.

2 Grammatical inference

2.1 Probabilistic models of discrete sequential data

The inductive learning problem tackled in grammatical inference [10] starts with a data

set 𝑋 = {𝑥(1), … , 𝑥(𝐶)} with 𝐶 strings. Each string 𝑥(𝑐) is a sequence (𝑥1
(𝑐), … , 𝑥𝑡𝑐

(𝑐)) of

symbols 𝑡𝑐, all of which are part of an alphabet: 𝑥𝑡 ∈ {1, … , 𝐸}. The number of different

symbols shall be denoted 𝐸. When interpreting the data as an event log with 𝐶 process

instances, each of which consists of a sequence of events which, in turn, a part of the

alphabet of event types, grammatical inference can be readily applied to event log data.

The task is to learn a formal representation of the language from which the sample

strings in the data originate. These representations are either automata or grammars [6].

Instead of building automata and grammars that decide if strings belong to a language,

it is often more useful to build probabilistic versions of these representations [10]. This

allows further analyses such as finding the most probable string or predicting how likely

certain symbols are given partial strings.

Since it is our goal to apply grammatical inference to the domain of BPM, we focus

our discussion on automata. Automata consist of states and transitions between these

states. By contrast, grammars consist of production rules that do not directly encode

any states. A state-based representation appears most natural as modeling techniques

used in BPM follow similar principles. Most importantly, explicit state modeling is one

of the reasons for the popularity of Petri nets [11].

Fig. 1. Directed graphical models of an HMM (a) and a PFA (b). Circles represent

random variables and are shaded grey if observations will be available. Directed arcs

encode dependencies of random variables among each other. Conversely, missing arcs

imply conditional independencies. Parameters are represented as solid black dots and

are connected via dashed, undirected arcs to the random variables to whose

distributions they belong [12]

There are many different variants of automata studied in the literature. Two of them

are most popular [7]. One is the Hidden Markov Model (HMM), the other is the

Z0

X0

Z1

X1

Z2

X2 ...

...

A‘π

B

Z0

X0

Z1

X1

Z2

X2 ...

...

Aπ

B

(a) (b)

Probabilistic Finite Automaton (PFA). HMMs [13] are generative models of string

distributions. They use an unobserved state space to explain how the strings have been

generated. To that end, discrete time steps are defined and the model’s state evolves in

time. At each step, the HMM is in one state and emits a symbol. The probability of

emitting a symbol depends only on the current state. Then, the HMM transitions to

another state which it is in in the next time step. The transition probability also depends

only on the current step’s state. Fig. 1 (a) illustrates the HMM.

Reflecting the HMM’s model structure against the backdrop of the BPM domain

unveils a problem. The process is driven mainly by the HMM’s states and the

transitions between them. The symbols however do not influence these transitions. In a

typical business process though, we would expect the next state to depend on the event

we have just observed. Consider the example of Petri nets, in which the state after firing

a transition clearly depends on which transition is chosen. As the HMM assumes

independence, we discard it is a probabilistic model for business processes.

This motivates considering the PFA [14]. We illustrated another graphical model in

Fig. 1 (b). It is similar to that of the HMM, but with an additional arc from each symbol

to the following state. Effectively, this arc removes the problematic assumption of

independence. This model can now serve as the probabilistic equivalent of automata as

applied in the BPM domain.

2.2 Learning techniques

Approaches to learn probabilistic automata can be categorized broadly into three

classes [7]. Those from the first class start with a very complex structure and iteratively

merge states until the structure is simple enough. Approaches from the second class

assume a standard structure and optimize parameters such that the likelihood of the data

is maximal. The third class of approaches consists of sampling methods that rely not on

estimating any model but on averaging over many possible models.

In a recent grammatical inference competition, different state-of-the-art learning

approaches have been benchmarked against each other on a large collection of data sets

[15]. The winning team [16] has designed a collapsed Gibbs sampler to estimate string

probabilities, i.e., they applied a method from the third class. Second best scored a team

[17] that used maximum likelihood (ML) estimation, i.e., the standard technique from

the second class. Methods from the first class have also been applied, yet they scored

worse than the others.

These results may indicate that sampling methods are the most promising learning

techniques. However, they have an important drawback. While approaches from other

categories deliver explicit representations of the analyzed processes along with

interpretable parameters, the Gibbs sampling techniques draws randomly many such

representations and averages over them when predicting. As a result, there is no way to

compactly visualize the predictive model anymore. However, one of our design goals

is to avoid creating a black box learning method. Hence, we design our approach not

based on sampling techniques but instead based on parameter optimization, i.e., a

technique from the second class.

3 PFA learning with event logs

3.1 Adapting the PFA model

In this section, we define two modifications of the PFA model of section 2.1. The first

addresses the problem of overfitting to small data sets. It is well-known that an ML

estimator is at danger of delivering results that fit well to training data but perform

badly on new data [18]. For process data, overfitting can be a severe problem. Process

miners consider incompleteness of data as one of the major challenges their discipline

has to tackle [19]. Consequently, we have to take precautions.

Fig. 2. Illustration of the modifications to the PFA model. (a) illustrates the

predefined start and end states. (b) illustrates the effect of Bayesian regularization.

For our probabilistic model, we address this problem with Bayesian regularization

[20]. This technique is best illustrated with the simple example of tossing a two-sided

coin (cf. Fig. 2 (b) for the following explanation). Consider two data sets. In the first,

heads was observed once, in the second, heads was observed 100 times. If the goal is

to estimate 𝑝, the probability of heads, then for both data sets, the ML estimate will be

𝑝 = 1. In the first scenario, we overfit to the small data set. This can be avoided by

smoothing the estimates with artificial observations. In the example of Fig. 2 (b), we

can add one artificial observation of both heads and tails, which would deliver an

estimate of 𝑝 = 2/3 in the first scenario and 𝑝 = 101/102 in the second. This is

achieved by interpreting 𝑝 not as a parameter but also as a random variable with a

distribution. When using the beta distribution in this example, the beta distribution’s

parameters can be used to specify the artificial observations [21]. Estimating 𝑝 in such

a setting is called Maximum a posteriori (MAP) estimation.

We can move to MAP estimation in our PFA model by treating the parameters as

random variables and by defining their distributions to be Dirichlet distributions, which

are conjugate priors for the discrete distributions used to define the other variables [21].

The parameters of the Dirichlet distributions can be interpreted as the artificial

observations we want to add when estimating parameters of discrete distributions. See

Fig. 3. (a) for the graphical model corresponding to the regularized PFA and Fig. 3. (b)

for a formal definition of the model.

start

end

1.0

1.0

kill
1.0

...

1

0
H T

1

0
H T

1

0
H T

1

0
H T

1x Heads 100x Heads

M
L

es
ti

m
at

e
M

A
P

es

ti
m

at
e

(a) (b)

Fig. 3. (a) shows the graphical model of the modified PFA. (b) shows the definition

of the model’s discrete and Dirichlet distributions.

The second modification is motivated by the notion of workflows nets, a special

class of Petri nets well known in the BPM domain [11]. Workflow nets have designated

start and end places (the source and sink) since well-designed process models should

clearly show where the process starts and ends. We impose the same constraints on the

PFA model.

To implement these constraints, we define a special starting state by keeping the

vector 𝜋 fixed at a value that allows the process to start only in that state. In the same

way, a special ending state is defined in which only a designated termination event

“kill” can be emitted. Also, the process is forced to stay in that state. Kill shall be an

event that can only be emitted in the ending state. All other states have zero probability

of emitting it. When processing he event log, the Kill must be appended to the end of

each process instance. Fig. 2 (a) illustrates the structural assumptions described above.

They can all be enforced by keeping the corresponding parameters fixed at suitable

values while executing the learning algorithm.

3.2 Learning algorithm

MAP estimation aims at maximizing the posterior probability 𝑃(𝜃|𝑋). 𝜃 denotes all

parameters that must be estimated. This optimization can be implemented by

optimizing the following expression: 𝜃∗ = argmax
𝜃

[𝑃(𝑋|𝜃)𝑃(𝜃)] [22]. Direct

optimization is computationally intractable in presence of unobserved variables such as

our state variables. A solution is to apply the expectation maximization (EM) procedure

[23]. Starting with (random) initial parameters, it iterates between computing the

expectation of the hidden state variables 𝑍 with respect to current parameters 𝜃𝑜𝑙𝑑 (i.e.,

𝔼𝑍|𝑋,𝜃𝑜𝑙𝑑 ln 𝑃(𝑋, 𝑍|𝜃)) and deriving updated parameters 𝜃𝑛𝑒𝑤 by optimizing them with

respect to this expectation over states (i.e., 𝜃𝑛𝑒𝑤 = argmax
𝜃

[𝔼𝑍|𝑋,𝜃𝑜𝑙𝑑 ln 𝑃(𝑋, 𝑍|𝜃) +
ln𝑃(𝜃)]). The algorithm stops once a local optimum is reached [24]. This optimum

depends on the initial parameters, which is why it is advisable to run EM multiple times

with different initial values to avoid bad local optima [25].

Z0

X0

Z1

X1

Z2

X2 ...

...

A

BS

πρ

R

(a) (b)

To apply EM to our probabilistic model, we must implement the four steps initial

parameter definition, E-step, M-step, and the check for convergence. Our

implementation generates initial parameters randomly, with the exception that we

enforce a starting and ending state as described in section 3.1. The corresponding

parameters are fixed at 0 and 1 respectively. Convergence is also determined in the

standard way, i.e., by defining a threshold and stopping the algorithm if the likelihood

of the data does not improve enough after updating parameters.

To implement the E-step and M-step, we start with 𝜃𝑛𝑒𝑤 =
argmax

𝜃
[𝔼𝑍|𝑋,𝜃𝑜𝑙𝑑 ln 𝑃(𝑋, 𝑍|𝜃) + ln𝑃(𝜃)] and use Lagrangian multipliers to derive

updating equations. These updating equations can be found in equations 1-3. They all

consist of a data-term, which is the contribution of the event log data, and a prior-term,

which is the contribution of the corresponding Dirichlet distribution. In each M-step,

these updating equations are used to compute updated parameter values.

𝜋𝑘 =
𝑑𝑎𝑡𝑎𝑘 + 𝑝𝑟𝑖𝑜𝑟𝑘

∑ (𝑑𝑎𝑡𝑎𝑘 + 𝑝𝑟𝑖𝑜𝑟𝑘)
𝐾
𝑗=1

 (1)

𝑏𝑘𝑒 =
𝑑𝑎𝑡𝑎𝑘𝑒 + 𝑝𝑟𝑖𝑜𝑟𝑘𝑒

∑ (𝑑𝑎𝑡𝑎𝑘𝑒 + 𝑝𝑟𝑖𝑜𝑟𝑘𝑒)
𝐸
𝑒=1

 (2)

𝑎𝑘𝑒𝑗 =
𝑑𝑎𝑡𝑎𝑘𝑒𝑗 + 𝑝𝑟𝑖𝑜𝑟𝑘𝑒𝑗

∑ (𝑑𝑎𝑡𝑎𝑘𝑒𝑗 + 𝑝𝑟𝑖𝑜𝑟𝑘𝑒𝑗)
𝐾
𝑗=1

 (3)

In each E-step, the data-terms are computed (the prior-terms are fixed and require

no computations). All terms are shown in equations 4-9. Within these equations,

𝑇𝑒
(𝑐)

denotes the set of points in time at which an event of type 𝑒 is observed in instance

𝑥(𝑐). 𝑇(𝑐) denotes all points in time regardless of the event types. All data-terms consist

of sums over marginal distributions over the state variables. For our probabilistic

model, they can be computed efficiently with a standard procedure called belief

propagation [26], which we have implemented in our E-step.

𝑑𝑎𝑡𝑎𝑘 = ∑𝑃(𝑍0
(𝑐) = 𝑘|𝑋(𝑐), 𝜃𝑜𝑙𝑑)

𝐶

𝑐=1

 (4)

𝑝𝑟𝑖𝑜𝑟𝑘 = 𝜌𝑘 − 1 (5)

𝑑𝑎𝑡𝑎𝑘𝑒 = ∑ ∑ 𝑃(𝑍𝑡
(𝑐) = 𝑘|𝑋(𝑐), 𝜃𝑜𝑙𝑑)

𝑡∈𝑇𝑒
(𝑐)

𝐶

𝑐=1

 (6)

𝑝𝑟𝑖𝑜𝑟𝑘𝑒 = 𝑠𝑘𝑒 − 1 (7)

𝑑𝑎𝑡𝑎𝑘𝑒𝑗 = ∑ ∑ 𝑃(𝑍𝑡−1
(𝑐) = 𝑘, 𝑍𝑡

(𝑐) = 𝑗|𝑋(𝑐), 𝜃𝑜𝑙𝑑)

𝑡∈𝑇𝑒
(𝑐)

,𝑡≠0

𝐶

𝑐=1

 (8)

𝑝𝑟𝑖𝑜𝑟𝑘𝑒𝑗 = 𝑟𝑘𝑒𝑗 − 1 (9)

3.3 Model selection

The learning algorithm described in the previous section must be provided with some

input parameters. To define the dimensions of the probabilistic model, the number of

event types 𝐸 and the number of states 𝐾 must be given. The former is known, but the

latter must be chosen arbitrarily. Hence, we use grid search to determine appropriate

values for 𝐾. The same is necessary for 𝜌, 𝑆, and 𝑅, the parameters of the Dirichlet

distributions. As we do not want to bias the model towards certain decisions, we use

symmetric Dirichlet priors. However, the strength of these parameters must still be

chosen arbitrarily, which again requires grid search.

In grid search, a range of possible values is defined for all parameters not directly

optimized by EM. For each combination of values, EM is applied. The trained models

from all these runs are subsequently compared to choose one that is best. Different

criteria can be applied in this comparison. One solution is assigning a score based on

likelihood penalized by the number of parameters, which favors small models. The

Akaike Information Criterion (AIC) [27] is a popular criterion of this kind. One

disadvantage of the AIC applied to probabilistic models of processes is that we would

expect the models to be sparse, i.e., we expect that most transitions have very low

probability. Hence, we also consider a less drastic criterion which we call the Heuristic

Information Criterion (HIC). It penalizes the likelihood by the number of parameters

exceeding a given threshold.

A different solution is to split the event log into a training set used for learning and

a validation set used to score generalization performance. According to this criterion,

the model performing best on the validation set is chosen.

4 Model structure visualization and analysis

Since we carefully designed the probabilistic model to be interpretable, it is possible to

derive meaningful visualizations from a learned model. Using the parameters, we could

directly draw an automaton with 𝐾 states and 𝐸𝐾2 transitions, i.e., a full graph. For all

but the smallest examples though, the visualization would not be useful as it would be

too complex. However, we can prune the automaton such that only sufficiently probable

transitions are kept. For each transition, we delete it if its probability 𝑏𝑘𝑒𝑎𝑘𝑒𝑗 is smaller

than a given threshold. As there are 𝐾𝐸 transitions going out of each state, each

transition would have a probability of 1/(𝐾𝐸) if all were equally probable. If they are

not, then the probability mass will focus at the probable transitions, while probabilities

of the improbable transitions will fall below this value. Hence, we define the pruning

ratio 𝑝𝑟𝑢𝑛𝑒 relative to 1/(𝐾𝐸). Thresholds are defined as 1/(𝑝𝑟𝑢𝑛𝑒 ⋅ 𝐾𝐸), such that

a pruning ratio of 𝑝𝑟𝑢𝑛𝑒 = 1.5 means throwing away all transitions being 1.5 times as

unlikely as if all transitions had probability 1/(𝐾𝐸).
As we effectively construct an automaton from an event log with this procedure, our

technique has delivered not only a prediction approach but can also be used as a process

discovery algorithm. To this end, we combine it with a technique that was used in the

region miner algorithm [9]. In this algorithm, an automaton is constructed and then

transformed into a Petri net using a tool called Petrify [28]. Hence, we can also apply

Petrify to transform our pruned automata to Petri nets. We have implemented the entire

approach as a process mining plugin for ProM1.

While discovering processes with our approach might have merits in itself, our

primary motivation is to provide non-technical audiences with a visualization of a

predictive model. If a stakeholder must be convinced that a certain predictive model

should be implemented in his organization, the visualization approach could be used to

build trust. Stakeholders can see in form of familiar process modeling notations what

the most probable paths through the predictive model are.

5 Evaluation

Experimental setup

To evaluate our approach as a predictive modeling technique, we apply it to a real-life

event log from the business process intelligence challenge in 2012 [29]. It originates

from a Dutch financial institute and contains about 262,000 events in 13,084 process

instances. There are three subprocesses (called P_W, P_A, and P_O) and each event is

uniquely assigned to one subprocess. Apart from the complete event log, we generated

three additional event logs by splitting the complete log into these subprocesses. Each

of the four event logs is split into a training set (50%), a validation set (25%) and a test

set (25%). The training set is used to run EM, the validation set is used during model

selection, and the test set is used to assess final performance.

The EM algorithm was configured in the following way. Convergence was achieved

when the log-likelihood increased less than 0.001 after the M-step. As a grid for 𝐾, we

used [2,4,8,10,12,14,16,18,20,30,40]. The grid for the Dirichlet distributions’ strength

was defined relative to the sizes of the event logs. The overall number of artificial

observations, distributed symmetrically over all Dirichlet distributions, was optimized

over the grid [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75] and is expressed as a fraction of the total

number of events in the logs. To compare different models in grid search, we separately

tried all three methods described in section 3.3, with the HIC applied with a threshold

of 0.05.

One measure to estimate the quality is H, the cross entropy (as estimated w.r.t. the

test set). We also consider a number of different prediction problems that could occur

in practice. The most straightforward one is predicting what the next symbol will be.

We report the average accuracy of our predictors. Accuracy is the fraction of

predictions in which the correct event has been predicted. The other prediction problem

is concerned with specific types of events. After selecting an event type, the task is to

predict whether or not the next event will be of this type. We measured the sensitivies

(true positives) and specitivities (true negatives) for each predictor applied to the

problem of deciding this for each event.

Note that our approach is not restricted to predicting the next event. Evaluating the

distribution over an event arbitrarily far in the future is also feasible. However, our

evaluation focusses on predicting the next event only.

1 http://goo.gl/FqzJwp

Results

In Table 1, we list the results for all four event logs (P_W, P_A, P_O, and P_Complete).

For each, we report performance statistics for the three different model selection criteria

(EM_HIC, EM_AIC, and EM_Val). The sensitivities and specificities have been

averaged over all symbols to keep the table compact.

A first observation is that accuracies do not rise up close to 1. However, accuracies

that high cannot be expected, since there is inherent uncertainty in the decisions made

in business processes. Thus, predicting the next event correctly must fail in some cases.

Predicting events completely at random would deliver the correct event with probability

1/𝐸. For the three events logs, accuracies of random prediction would be below 0.10.

Hence, our approach is significantly better than random guessing.

As for comparing the model selection criteria, the results demonstrate that using the

validation set to assess performance delivered solid results if measured by cross

entropy. For this metric, the validation set always delivered the best model, i.e., the one

with the smallest cross entropy.

This is changing though if we turn to the actual prediction problems. The HIC

performed best on P_Complete and P_A, yet bad on P_W, for which the AIC worked

better. For event log P_O, all three methods deliver nearly the same performance.

Hence, our preliminary results indicate that no model selection criterion can generally

outperform the others.

Table 1. Accuracy, average sensitivity and average specitivity for different predictive models.

Event log Predictor Accuracy Ø Sensitivity Ø Specitivity H

P_W EM_HIC 0.685 0.558 0.950 12.810

EM_AIC 0.719 0.578 0.955 11.183

EM_Val 0.718 0.582 0.955 10.385

P_A EM_HIC 0.801 0.723 0.980 3.093

EM_AIC 0.769 0.658 0.977 3.393

EM_Val 0.796 0.720 0.980 3.014

P_O EM_HIC 0.809 0.646 0.973 4.588

EM_AIC 0.811 0.647 0.973 4.513

EM_Val 0.811 0.647 0.973 4.513

P_Complete EM_HIC 0.735 0.508 0.988 17.273

EM_AIC 0.694 0.460 0.986 17.726

EM_Val 0.700 0.437 0.986 16.078

In Fig. 4, an exemplary Petri net visualization is shown. It has been generated from

a predictor for event log P_A, chosen by the HIC. An analyst could double-check this

visualization with his domain knowledge. Alternatively, he could apply other process

discovery techniques to verify that the predictive model is indeed a good model for the

event log. Comparing this Petri net with results found during the challenge, we can see

that the visualization of the predictor is almost identical to what has been discovered

with other methods [30]. Hence, this visual comparison with other findings delivers

further evidence for the appropriateness of the predictive model.

Fig. 4. Petri net visualization of predictor fitted with the HIC criterion, generated

with the ProM plugin and a pruning ratio of 1.5.

6 Conclusion and Outlook

In this paper, we presented an approach to apply predictive modeling to event log data.

We discussed different representations used in the literature of grammatical inference

to model formal languages probabilistically. Against the backdrop of the BPM domain,

we identified probabilistic versions of finite automata to be most appropriate. We also

identified suitable learning techniques to fit these models to data. Starting with this

theoretical background, we modified the probabilistic model to tailor it to the problem

at hand. Subsequently, we derived an EM optimization algorithm, defined a grid search

procedure to also optimize its inputs, and tested the approach on real-world event logs.

Our preliminary results demonstrate the applicability of the approach. With the ProM

plugin, in which we combined the predictive approach with ProM’s Petri net synthesis

capabilities, we provide a readily applicable process discovery tool.

In future research, we plan to conduct more extensive evaluations. In particular, we

will systematically compare our model selection criteria to identify which work best

under which circumstances. Adding experiments with synthetic data may also allow us

to thoroughly investigate the performance of the predictive approach with respect to a

known gold standard. For the real-life event log we used in the preliminary evaluation,

the “true” probabilities are unknown, so that we cannot quantify the quality of the

predictors generated with our approach in absolute terms.

References

1. van der Aalst, W. M. P.: Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Berlin / Heidelberg: Springer, (2011)

2. van der Aalst, W. M. P.: Process Discovery: Capturing the Invisible, IEEE Comput. Intell.

Mag., vol. 5, no. 1, pp. 28–41, (2010)

3. van der Aalst, W. M. P., Pesic, M., Song, M.: Beyond Process Mining: From the Past to

Present and Future. In: 22nd International Conference, CAiSE 2010, pp. 38–52. (2010)

4. van der Aalst, W. M. P., Schonenberg, M. H., Song, M.: Time prediction based on process

mining. Inf. Syst. J., vol. 36, no. 2, pp. 450–475, (2011)

5. Kim, A., Obregon, J., Jung, J.: Constructing Decision Trees from Process Logs for Performer

Recommendation. Bus. Process Manag. Work. Lect. Notes Bus. Inf. Process., vol. 171, pp.

224–236, (2014)

6. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognit., vol.

38, pp. 1332–1348, (2005)

7. Verwer, S., Eyraud, R., de la Higuera, C.: PAutomaC: a PFA/HMM Learning Competition.

Mach. Learn. J., (2013)

8. Shmuelli, G., Koppius, O. R.: Predictive Analytics in Information Systems Research. Manag.

Inf. Syst. Q., vol. 35, no. 3, pp. 553–572, (2011)

9. van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen, B. F., Kindler, E.,

Günther, C. W.: Process Mining: A Two-Step Approach to Balance Between Underfitting

and Overfitting. Softw. Syst. Model., vol. 9, no. 1, pp. 87–111, (2010)

10. de la Higuera, C.: Grammatical Inference. Cambridge, New York, Melbourne: Cambride

University Press, (2010)

11. van der Aalst, W. M. P.: The Application of Petri Nets to Workflow Management. J. Circuits

Syst. Comput., vol. 8, no. 1, pp. 21–66, (1998)

12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The

MIT Press, (2009)

13. Rabiner, L. R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition. Proc. IEEE, vol. 77, no. 2, pp. 257–286, (1989)

14. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R. C.: Probabilistic

finite-state machines - part I. IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 7, pp.

1013–1025, (2005)

15. Verwer, S., Eyraud, R., de la Higuera, C.: Results of the PAutomaC Probabilistic Automaton

Learning Competition. In: 11th International Conference on Grammatical Inference, pp. 243–

248, (2012)

16. Shibata, C. , Yoshinaka, R.: Marginalizing out transition probabilities for several subclasses

of Pfas. J. Mach. Learn. Res. - Work. Conf. Proceedings, ICGI’12, vol. 21, pp. 259–263,

(2012)

17. Hulden, M.: Treba: Efficient Numerically Stable EM for PFA. JMLR Work. Conf. Proc., vol.

21, pp. 249–253, (2012)

18. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning - Data Mining,

Inference, and Prediction, 2nd ed. (2009)

19. van der Aalst, W. M. P., Adriansyah, A., Alves de Medeiros, et al.: Process mining manifesto.

Lect. notes Bus. Inf. Process., vol. 99, pp. 169–194, (2011)

20. Steck, H. , Jaakkola, T.: On the Dirichlet Prior and Bayesian Regularization. In: Neural

Information Processing Systems, vol. 15, pp. 1441–1448, (2002)

21. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, (2011)

22. Bishop, C. M.: A New Framework for Machine Learning. In: IEEE World Congress on

Computational Intelligence (WCCI 2008), pp. 1–24, (2008)

23. Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data via the EM

Algorithm. J. R. Stat. Soc. Ser. B, vol. 39, no. 1, pp. 1–22, (1977)

24. Bishop, C. M.: Pattern Recognition and Machine Learning. New York: Springer, (2006)

25. Moon, T. K.: The Expectation-Maximization Algorithm. IEEE Signal Process. Mag., vol. 13,

no. 6, pp. 47–60, (1996)

26. Murphy, K.: Machine Learning: A Probabilistic Perspective. The MIT Press, (2012)

27. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In:

Second International Symposium on Information Theory, pp. 267–281, (1973)

28. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool

for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE

Trans. Inf. Syst., vol. E80-D, no. 3, pp. 315–325, (1997)

29. van Dongen, B. F.: BPI Challenge 2012, http://www.win.tue.nl/bpi/2012/challenge (2012)

30. Adriansyah, A. , Buijs, J.: Mining Process Performance from Event Logs: The BPI Challenge

2012 Case Study. BPM Center Report BPM-12-15, BPMcenter.org, (2012)

